


Name:

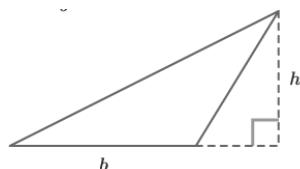
Date:

| Main Ideas/Questions                                                                                           | Notes/Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <h2>Angle of Elevation</h2>   | <p>When looking UP to an object, the <b>angle of elevation</b> is formed by an observer's line of sight and a horizontal line.</p>                                                                                                                                                                                                                                                                                                                                                                    |
| <h2>Angle of Depression</h2>  | <p>When looking DOWN to an object, the <b>angle of depression</b> is formed by an observer's line of sight and a horizontal line.</p>                                                                                                                                                                                                                                                                                                                                                                 |
| <h2>Examples</h2>                                                                                              | <p>Draw and label a diagram, then find the unknown.</p> <p><b>1.</b> John sights the top of a 60 m lighthouse at an angle of elevation of <math>58^\circ</math>. If John is 1.55m, how far is he standing from the base of the lighthouse?</p> <p style="text-align: right;">Ans: <math>\approx 36.5</math></p> <p><b>2.</b> Building A is 180 m and Building B is 220 m. If the angle of depression from the top of Building B to the top of Building A is <math>42^\circ</math>, how far apart are the buildings?</p> <p style="text-align: right;">Ans: <math>\approx 44.4</math></p> |



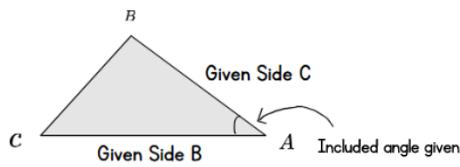
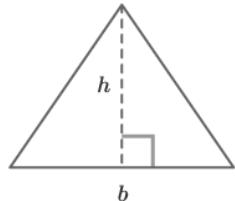
# SINE RULE & COSINE RULE




|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Main Ideas</b>               | <p>The Sine Rule and Cosine Rule can be used for <b>all types of triangles</b>, including both right-angled and non-right-angled triangles.</p>                                                                                                                                                                                                                                                                                    |
| <b>SINE RULE</b><br>            | $\frac{a}{\sin a} = \frac{b}{\sin b} = \frac{c}{\sin c} \quad \text{or} \quad \frac{\sin a}{a} = \frac{\sin b}{b} = \frac{\sin c}{c}$ <p><i>(Provided in Formula Sheet)</i></p> <p>We use Sine rule when we have:</p> <p>Info on one side and its opposite angle are given (1 pair)<br/>+ info either one more side or one more angle (1/2 pair)</p>                                                                               |
| <b>COSINE RULE</b><br><p>Or</p> | $a^2 = b^2 + c^2 - 2bc \cos A$ <p><i>(Provided in Formula Sheet)</i></p> <p>!! When finding angle A, be sure to move <math>b^2</math> and <math>c^2</math> first before dividing by <math>-2bc</math>.</p> $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ <p>We use Cosine rule when we have either:</p> <ol style="list-style-type: none"> <li>1. All 3 sides are given Or</li> <li>2. 2 sides and an included angle is given.</li> </ol> |



# AREA OF TRIANGLE FORMULA


**There are 2 ways to calculate area of Triangle.**



$$\diamond \text{ Area of Triangle} = \frac{1}{2} \times b \times h$$

What happens if the height  $h$  is not given?



$$\diamond \text{ Area of Triangle} = \frac{1}{2} ab \sin C$$

*(Provided in Formula Sheet)*

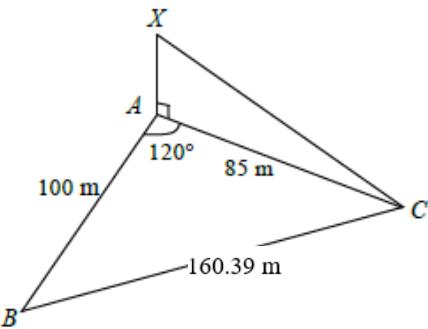
Used when two sides and the included angle are known.

## IMPORTANT! Commonly Tested Question

Exam questions may ask things like:

- Find the **shortest distance from** a line AB to a point C.
- Sally walks from A to C and reaches a point where the **angle of elevation to the top of tower P is the greatest**. Find the angle of elevation.

**Concept:** The shortest distance from a point to a line is the **perpendicular distance**.


**Concept:** The angle of elevation from Sally to the top of the tower is greatest when she is at the point closest to the tower, forming a perpendicular distance to the tower.

The approach is to always find the area of the triangle using  $\frac{1}{2}abs \sin C$ . After that, use the area found and equate it to the formula  $\frac{1}{2} \times \text{base} \times \text{height}$  to solve for  $h$ .

Refer to example below.

### Example : [2022 BOONLAY SEC 3 EOY P2]

The figure below shows a triangular plot of land ABC with a vertical signal tower AX.  $AB = 100 \text{ m}$  and  $AC = 85 \text{ m}$ .



(a) Find the shortest distance from A to BC. [2]

$$\begin{aligned}\text{Area of triangle } ABC &= \frac{1}{2} \times 100 \times 85 \times \sin 120^\circ \\ &= 3680 \text{ m}^2 \text{ (3.s.f)}\end{aligned}$$

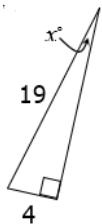
$$\text{Area of triangle } ABC = \frac{1}{2} \times 160.3901 \times \text{height}$$

$$3680.60797 = \frac{1}{2} \times 160.3901 \times \text{height}$$

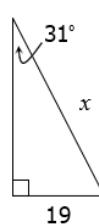
$$\text{Shortest distance} = 45.896 \text{ cm}$$

(b) A signal tower XA stands vertically at A. The angle of elevation of the top of the tower from C is  $10^\circ$ . Calculate the height of the tower. [2]

$$\begin{aligned}\tan 10^\circ &= \frac{\text{height}}{85} \\ \text{Height} &= 14.9877 \text{ m} \\ &= 15.0 \text{ m (3.s.f)}\end{aligned}$$

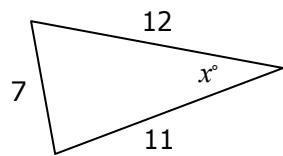

(c) Calculate the greatest angle of elevation of the top of the tower when viewed from any point along BC. [2]

$$\begin{aligned}\tan \theta &= \frac{14.9877}{45.896} \\ \text{Greatest angle of elevation} &= 18.1^\circ\end{aligned}$$

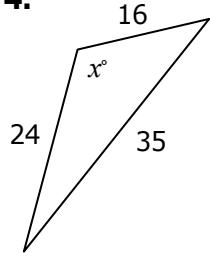

Practice on  
Applying  
Formulas  
(Basic)

Use Sine Rule to solve for  $x$ .

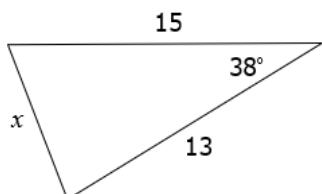
1.




2.

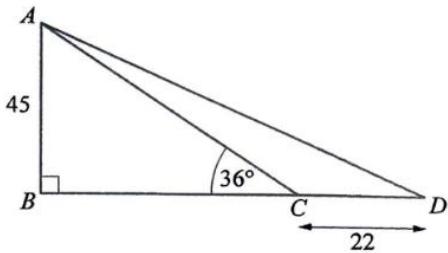



Use Cosine Rule to solve for  $x$ .


3.



4.




5.



## Application Questions –

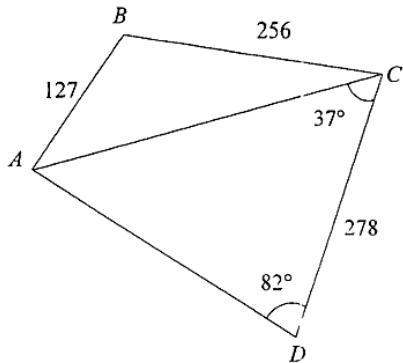
### 6. 2020 O LEVEL EMATH P1 Q18 [4 MARKS]



The diagram represents a tower,  $AB$ , built on horizontal ground.

The height of the tower is  $45$  m.

From a point  $C$ , the angle of elevation of the top of the tower is  $36^\circ$ .


Point  $D$  is  $22$  m from  $C$  and  $BCD$  is a straight line.

Calculate the angle of elevation of the top of the tower from the point  $D$ .

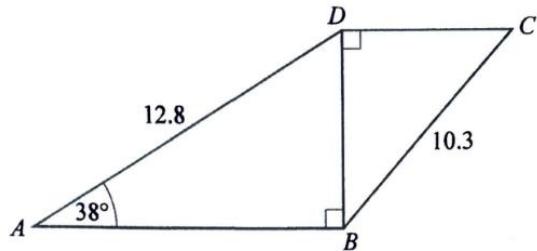
Answer ..... [4]

Ans:  $28.2^\circ$  (d.p)

7. 2023 Ahmad Ibrahim Secondary 3 EOY P1 Q14 [3 MARKS]



In the diagram,  $AB = 127$  km,  $BC = 256$  km and  $CD = 278$  km.


Angle  $ACD = 37^\circ$  and angle  $ADC = 82^\circ$ .

Find angle  $ABC$ .

Answer Angle  $ABC = \dots \dots \dots^\circ$  [3]

Ans:  $105.5^\circ$  (d.p)

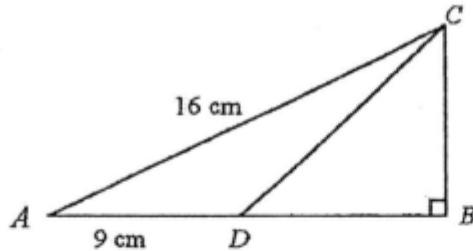
8. 2022 O LEVEL EMATH P1 Q22 [3 MARKS]



The diagram shows a trapezium  $ABCD$ .

Angle  $ABD =$  angle  $BDC = 90^\circ$ .

$AD = 12.8$  cm,  $BC = 10.3$  cm and angle  $DAB = 38^\circ$ .


Calculate angle  $CBD$ .

Answer Angle  $CBD = \dots \dots \dots$  [3]

Ans:  $40.1^\circ$  (d.p)

9. 2015 Clementi Town Secondary School Sec 4 PRELIM P1 Q20 [7 Marks]

In the diagram,  $ADB$  is a straight line,  $\angle ABC = 90^\circ$ ,  $AC = 16\text{ cm}$ ,  $AD = 9\text{ cm}$  and area of  $\Delta ADC = 36\text{ cm}^2$ .



(a) Prove that  $\angle CAD = 30^\circ$ .

Answer (a)

[2]

(b) Find the shortest distance between point  $D$  and the line  $AC$ .

Answer (b) ..... cm [1]

(c) Find the length of  $CD$ .

Answer (c) ..... cm [2]

(d) Find  $\sin \angle ADC$ .

Answer (d) ..... [2]