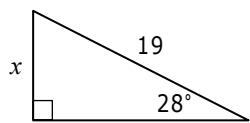
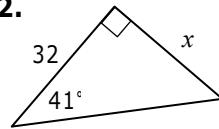


Name:

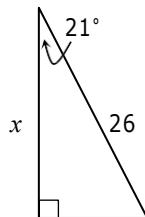
Date:

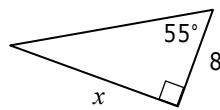

Main Ideas/Questions	Notes/Examples						
What are TRIGONOMETRIC RATIO	Trigonometric ratios help us find missing angles, missing side lengths, heights of buildings, and distances that we cannot measure directly. ⇒ Trigonometric ratios are only used in RIGHT-ANGLED TRIANGLE .						
	<p>Step 1: Start by labelling the hypotenuse, adjacent, and opposite based on given angle.</p> <ul style="list-style-type: none"> □ The longest side is the hypotenuse (always opposite the 90°). □ The side next to the angle you are looking at is the adjacent. □ The side opposite the angle is the opposite. <p>Each acute angle ($0^\circ < \text{angle} < 90^\circ$) of a right triangle has the following trigonometric ratios:</p> <table border="1" style="width: 100%; border-collapse: collapse;"> <tr> <td style="width: 33%; padding: 5px;">SINE</td><td style="width: 33%; padding: 5px;">$\text{Sin } \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$</td></tr> <tr> <td style="width: 33%; padding: 5px;">COSINE</td><td style="width: 33%; padding: 5px;">$\text{Cos } \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$</td></tr> <tr> <td style="width: 33%; padding: 5px;">TANGENT</td><td style="width: 33%; padding: 5px;">$\text{Tan } \theta = \frac{\text{Opposite}}{\text{Adjacent}}$</td></tr> </table>	SINE	$\text{Sin } \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$	COSINE	$\text{Cos } \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$	TANGENT	$\text{Tan } \theta = \frac{\text{Opposite}}{\text{Adjacent}}$
SINE	$\text{Sin } \theta = \frac{\text{Opposite}}{\text{Hypotenuse}}$						
COSINE	$\text{Cos } \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}}$						
TANGENT	$\text{Tan } \theta = \frac{\text{Opposite}}{\text{Adjacent}}$						
* REMEMBER!! *	<p style="text-align: center;"> </p> <p style="text-align: center;"> $\tan = \text{_____}$ $\cos = \text{_____}$ $\sin = \text{_____}$ </p>						
Obtuse Angles	<p>❖ Trigonometric ratios can be applied to obtuse angles by using reference angles.</p> <p>Key Relationships:</p> <ul style="list-style-type: none"> ❖ $\sin(\theta) = \sin(180^\circ - \theta)$ (Always positive for obtuse angles). ❖ $\cos(\theta) = -\cos(180^\circ - \theta)$ (Always negative for obtuse angles) ❖ $\tan(\theta) = -\tan(180^\circ - \theta)$ (Always negative for obtuse angles) <p>Where θ is an obtuse angle.</p> <p>TIPS:</p> <ol style="list-style-type: none"> 1. Find the reference angle (acute angle): $\alpha = 180^\circ - \theta$ 2. Then, apply the trigonometric ratio for α. 3. Finally, apply the sign rules for the obtuse angle. 						

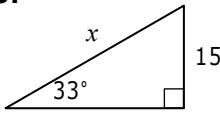
FINDING SIDE LENGTHS Using Trigonometry

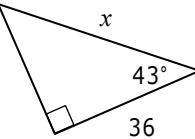

Note: Make sure your calculator is in **degree mode!**

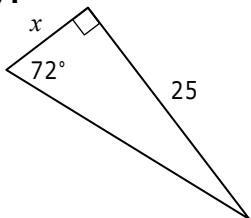
Solve for x .


1.

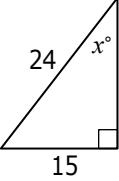
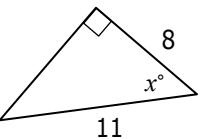
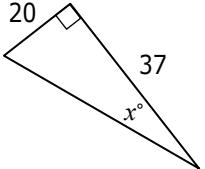
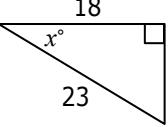
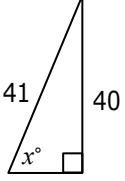
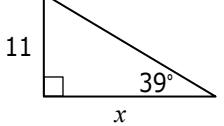
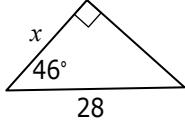
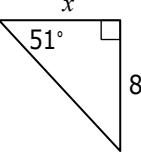
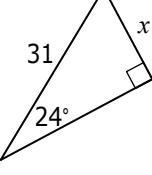

2.


3.


4.

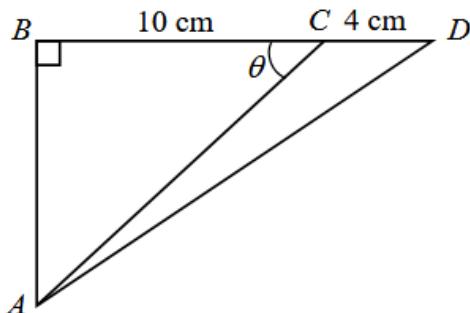

5.

6.

7.

8.


Kelly leaned a 12-m ladder against his house. If the angle formed by the ladder and the ground is 68° , how far from the base of the house did he place the ladder?

Main Ideas/Questions	<p>⇒ Leave all angles correct to 1 decimal place, unless otherwise stated in the question.</p>
<h2>FINDING ANGLE</h2> <p>Note: Make sure your calculator is in degree mode!</p>	<p>Find the value of x.</p> <p>1.</p> <p>2.</p>
	<p>3.</p> <p>4.</p>
	<p>5.</p>
<h2>REVIEW:</h2> <p>Sides & Angles</p>	<p>Find the value of x.</p> <p>7.</p> <p>8.</p> <p>9.</p> <p>10.</p>

11. 2018 Methodist Girls' School S4 PRELIM P1 Q6 [6 Marks]

In the diagram, not drawn to scale, BCD is a straight line. Given that $BC = 10 \text{ cm}$,

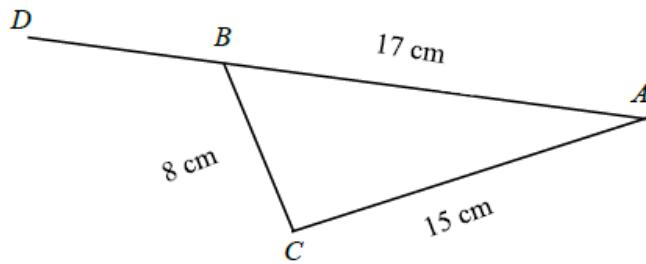
$$CD = 4 \text{ cm, and } \cos \theta = \frac{4}{5}.$$

Find

- (a) the length of AC ,
- (b) the value of $\tan \angle ACD$, giving your answer as a fraction in its simplest form,
- (c) the exact value of AD^2 ,
- (d) the shortest distance of C to AD .

Answer : (a) cm [1]

(b) [2]


(c) [1]

(d) cm [2]

Ans: (a) 12.5cm/ (b) -3/4 (c) 252.25 (d) 1.89cm

12. 2022 BOONLAY SEC 3 EOY P1 Q10 [4 MARKS]

In the diagram, $AB = 17$ cm, $AC = 15$ cm, $BC = 8$ cm and ABD is a straight line.

(a) Show that $\triangle ABC$ is a right-angled triangle.

Answer

.....
.....
.....
.....

[2]

(b) Write down as a fraction the exact value of

(i) $\tan \angle CAB$,

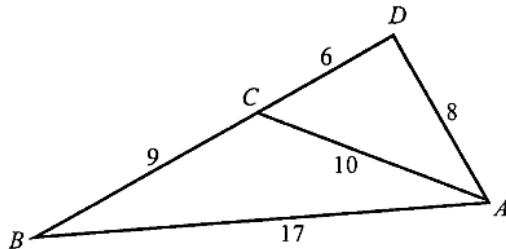
Answer [1]

(ii) $\cos \angle CBD$.

Answer [1]

13. 2014 O LEVEL EMATH P1 Q4 [2 MARKS]

The sine of an angle is 0.7420.


Give two possible values for the angle.

[2]

Ans: 47.9 deg or 132.1 deg (or 0.836 rad or 2.31 rad)

14. 2023 ACS (BARKER RD) S3 EOY EMATH P1 Q14 [4 MARKS]

ABC is a triangle in which $AC = 10$ cm, $BC = 9$ cm and $AB = 17$ cm. D is a point on BC produced, where $CD = 6$ cm and $AD = 8$ cm.

(a) Explain why angle ADB is a right angle.

Answer _____

[2]

(b) Find $\cos \angle ACB$, expressing your answer as a fraction.

Answer _____ [2]

Ans: (b)
 $\cos \angle ACB = -\cos \angle ACD = -\frac{3}{5}$